多读书多实践,勤思考善领悟

Hive数据查询详解

本文于1833天之前发表,文中内容可能已经过时。

一、数据准备

为了演示查询操作,这里需要预先创建三张表,并加载测试数据。

数据文件emp.txt和dept.txt可以从本仓库的resources目录下载。

1.1 员工表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
 -- 建表语句
CREATE TABLE emp(
empno INT, -- 员工表编号
ename STRING, -- 员工姓名
job STRING, -- 职位类型
mgr INT,
hiredate TIMESTAMP, --雇佣日期
sal DECIMAL(7,2), --工资
comm DECIMAL(7,2),
deptno INT) --部门编号
ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";

--加载数据
LOAD DATA LOCAL INPATH "/usr/file/emp.txt" OVERWRITE INTO TABLE emp;

1.2 部门表

1
2
3
4
5
6
7
8
9
10
-- 建表语句
CREATE TABLE dept(
deptno INT, --部门编号
dname STRING, --部门名称
loc STRING --部门所在的城市
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";

--加载数据
LOAD DATA LOCAL INPATH "/usr/file/dept.txt" OVERWRITE INTO TABLE dept;

1.3 分区表

这里需要额外创建一张分区表,主要是为了演示分区查询:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
CREATE EXTERNAL TABLE emp_ptn(
empno INT,
ename STRING,
job STRING,
mgr INT,
hiredate TIMESTAMP,
sal DECIMAL(7,2),
comm DECIMAL(7,2)
)
PARTITIONED BY (deptno INT) -- 按照部门编号进行分区
ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";


--加载数据
LOAD DATA LOCAL INPATH "/usr/file/emp.txt" OVERWRITE INTO TABLE emp_ptn PARTITION (deptno=20)
LOAD DATA LOCAL INPATH "/usr/file/emp.txt" OVERWRITE INTO TABLE emp_ptn PARTITION (deptno=30)
LOAD DATA LOCAL INPATH "/usr/file/emp.txt" OVERWRITE INTO TABLE emp_ptn PARTITION (deptno=40)
LOAD DATA LOCAL INPATH "/usr/file/emp.txt" OVERWRITE INTO TABLE emp_ptn PARTITION (deptno=50)

二、单表查询

2.1 SELECT

1
2
-- 查询表中全部数据
SELECT * FROM emp;

2.2 WHERE

1
2
-- 查询10号部门中员工编号大于 7782 的员工信息 
SELECT * FROM emp WHERE empno > 7782 AND deptno = 10;

2.3 DISTINCT

Hive支持使用DISTINCT关键字去重。

1
2
-- 查询所有工作类型
SELECT DISTINCT job FROM emp;

2.4 分区查询

分区查询(Partition Based Queries),可以指定某个分区或者分区范围。

1
2
3
-- 查询分区表中部门编号在[20,40]之间的员工
SELECT emp_ptn.* FROM emp_ptn
WHERE emp_ptn.deptno >= 20 AND emp_ptn.deptno <= 40;

2.5 LIMIT

1
2
-- 查询薪资最高的5名员工
SELECT * FROM emp ORDER BY sal DESC LIMIT 5;

2.6 GROUP BY

Hive支持使用GROUP BY进行分组聚合操作。

1
2
3
4
set hive.map.aggr=true;

-- 查询各个部门薪酬综合
SELECT deptno,SUM(sal) FROM emp GROUP BY deptno;

hive.map.aggr控制程序如何进行聚合。默认值为false。如果设置为true,Hive会在map阶段就执行一次聚合。这可以提高聚合效率,但需要消耗更多内存。

2.7 ORDER AND SORT

可以使用ORDER BY或者Sort BY对查询结果进行排序,排序字段可以是整型也可以是字符串:如果是整型,则按照大小排序;如果是字符串,则按照字典序排序。ORDER BY 和 SORT BY 的区别如下:

  • 使用ORDER BY时会有一个Reducer对全部查询结果进行排序,可以保证数据的全局有序性;
  • 使用SORT BY时只会在每个Reducer中进行排序,这可以保证每个Reducer的输出数据是有序的,但不能保证全局有序。

由于ORDER BY的时间可能很长,如果你设置了严格模式(hive.mapred.mode = strict),则其后面必须再跟一个limit子句。

注 :hive.mapred.mode默认值是nonstrict ,也就是非严格模式。

1
2
-- 查询员工工资,结果按照部门升序,按照工资降序排列
SELECT empno, deptno, sal FROM emp ORDER BY deptno ASC, sal DESC;

2.8 HAVING

可以使用HAVING对分组数据进行过滤。

1
2
-- 查询工资总和大于9000的所有部门
SELECT deptno,SUM(sal) FROM emp GROUP BY deptno HAVING SUM(sal)>9000;

2.9 DISTRIBUTE BY

默认情况下,MapReduce程序会对Map输出结果的Key值进行散列,并均匀分发到所有Reducer上。如果想要把具有相同Key值的数据分发到同一个Reducer进行处理,这就需要使用DISTRIBUTE BY字句。

需要注意的是,DISTRIBUTE BY虽然能保证具有相同Key值的数据分发到同一个Reducer,但是不能保证数据在Reducer上是有序的。情况如下:

把以下5个数据发送到两个Reducer上进行处理:

1
2
3
4
5
k1
k2
k4
k3
k1

Reducer1得到如下乱序数据:

1
2
3
k1
k2
k1

Reducer2得到数据如下:

1
2
k4
k3

如果想让Reducer上的数据时有序的,可以结合SORT BY使用(示例如下),或者使用下面我们将要介绍的CLUSTER BY。

1
2
-- 将数据按照部门分发到对应的Reducer上处理
SELECT empno, deptno, sal FROM emp DISTRIBUTE BY deptno SORT BY deptno ASC;

2.10 CLUSTER BY

如果SORT BYDISTRIBUTE BY指定的是相同字段,且SORT BY排序规则是ASC,此时可以使用CLUSTER BY进行替换,同时CLUSTER BY可以保证数据在全局是有序的。

1
SELECT empno, deptno, sal FROM emp CLUSTER  BY deptno ;

三、多表联结查询

Hive支持内连接,外连接,左外连接,右外连接,笛卡尔连接,这和传统数据库中的概念是一致的,可以参见下图。

需要特别强调:JOIN语句的关联条件必须用ON指定,不能用WHERE指定,否则就会先做笛卡尔积,再过滤,这会导致你得不到预期的结果(下面的演示会有说明)。

3.1 INNER JOIN

1
2
3
4
5
6
7
8
-- 查询员工编号为7369的员工的详细信息
SELECT e.*,d.* FROM
emp e JOIN dept d
ON e.deptno = d.deptno
WHERE empno=7369;

--如果是三表或者更多表连接,语法如下
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)

3.2 LEFT OUTER JOIN

LEFT OUTER JOIN 和 LEFT JOIN是等价的。

1
2
3
4
-- 左连接
SELECT e.*,d.*
FROM emp e LEFT OUTER JOIN dept d
ON e.deptno = d.deptno;

3.3 RIGHT OUTER JOIN

1
2
3
4
--右连接
SELECT e.*,d.*
FROM emp e RIGHT OUTER JOIN dept d
ON e.deptno = d.deptno;

执行右连接后,由于40号部门下没有任何员工,所以此时员工信息为NULL。这个查询可以很好的复述上面提到的——JOIN语句的关联条件必须用ON指定,不能用WHERE指定。你可以把ON改成WHERE,你会发现无论如何都查不出40号部门这条数据,因为笛卡尔运算不会有(NULL, 40)这种情况。

3.4 FULL OUTER JOIN

1
2
3
SELECT e.*,d.*
FROM emp e FULL OUTER JOIN dept d
ON e.deptno = d.deptno;

3.5 LEFT SEMI JOIN

LEFT SEMI JOIN (左半连接)是 IN/EXISTS 子查询的一种更高效的实现。

  • JOIN 子句中右边的表只能在 ON 子句中设置过滤条件;
  • 查询结果只包含左边表的数据,所以只能SELECT左表中的列。
1
2
3
4
5
6
7
8
-- 查询在纽约办公的所有员工信息
SELECT emp.*
FROM emp LEFT SEMI JOIN dept
ON emp.deptno = dept.deptno AND dept.loc="NEW YORK";

--上面的语句就等价于
SELECT emp.* FROM emp
WHERE emp.deptno IN (SELECT deptno FROM dept WHERE loc="NEW YORK");

3.6 JOIN

笛卡尔积连接,这个连接日常的开发中可能很少遇到,且性能消耗比较大,基于这个原因,如果在严格模式下(hive.mapred.mode = strict),Hive会阻止用户执行此操作。

1
SELECT * FROM emp JOIN dept;

四、JOIN优化

4.1 STREAMTABLE

在多表进行联结的时候,如果每个ON字句都使用到共同的列(如下面的b.key),此时Hive会进行优化,将多表JOIN在同一个map / reduce作业上进行。同时假定查询的最后一个表(如下面的 c 表)是最大的一个表,在对每行记录进行JOIN操作时,它将尝试将其他的表缓存起来,然后扫描最后那个表进行计算。因此用户需要保证查询的表的大小从左到右是依次增加的。

1
`SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key) JOIN c ON (c.key = b.key)`

然后,用户并非需要总是把最大的表放在查询语句的最后面,Hive提供了/*+ STREAMTABLE() */标志,用于标识最大的表,示例如下:

1
2
3
4
SELECT /*+ STREAMTABLE(d) */  e.*,d.* 
FROM emp e JOIN dept d
ON e.deptno = d.deptno
WHERE job='CLERK';

4.2 MAPJOIN

如果所有表中只有一张表是小表,那么Hive把这张小表加载到内存中。这时候程序会在map阶段直接拿另外一个表的数据和内存中表数据做匹配,由于在map就进行了JOIN操作,从而可以省略reduce过程,这样效率可以提升很多。Hive中提供了/*+ MAPJOIN() */来标记小表,示例如下:

1
2
3
4
SELECT /*+ MAPJOIN(d) */ e.*,d.* 
FROM emp e JOIN dept d
ON e.deptno = d.deptno
WHERE job='CLERK';

五、SELECT的其他用途

查看当前数据库:

1
SELECT current_database()

六、本地模式

在上面演示的语句中,大多数都会触发MapReduce, 少部分不会触发,比如select * from emp limit 5就不会触发MR,此时Hive只是简单的读取数据文件中的内容,然后格式化后进行输出。在需要执行MapReduce的查询中,你会发现执行时间可能会很长,这时候你可以选择开启本地模式。

1
2
--本地模式默认关闭,需要手动开启此功能
SET hive.exec.mode.local.auto=true;

启用后,Hive将分析查询中每个map-reduce作业的大小,如果满足以下条件,则可以在本地运行它:

  • 作业的总输入大小低于:hive.exec.mode.local.auto.inputbytes.max(默认为128MB);
  • map-tasks的总数小于:hive.exec.mode.local.auto.tasks.max(默认为4);
  • 所需的reduce任务总数为1或0。

因为我们测试的数据集很小,所以你再次去执行上面涉及MR操作的查询,你会发现速度会有显著的提升。

参考资料

  1. LanguageManual Select

  2. LanguageManual Joins

  3. LanguageManual GroupBy
  4. LanguageManual SortBy