多读书多实践,勤思考善领悟

Storm集成Redis详解

本文于1829天之前发表,文中内容可能已经过时。

一、简介

Storm-Redis提供了Storm与Redis的集成支持,你只需要引入对应的依赖即可使用:

1
2
3
4
5
6
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-redis</artifactId>
<version>${storm.version}</version>
<type>jar</type>
</dependency>

Storm-Redis使用Jedis为Redis客户端,并提供了如下三个基本的Bolt实现:

  • RedisLookupBolt:从Redis中查询数据;
  • RedisStoreBolt:存储数据到Redis;
  • RedisFilterBolt : 查询符合条件的数据;

RedisLookupBoltRedisStoreBoltRedisFilterBolt均继承自AbstractRedisBolt抽象类。我们可以通过继承该抽象类,实现自定义RedisBolt,进行功能的拓展。

二、集成案例

2.1 项目结构

这里首先给出一个集成案例:进行词频统计并将最后的结果存储到Redis。项目结构如下:

用例源码下载地址:storm-redis-integration

2.2 项目依赖

项目主要依赖如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<properties>
<storm.version>1.2.2</storm.version>
</properties>

<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>${storm.version}</version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-redis</artifactId>
<version>${storm.version}</version>
</dependency>
</dependencies>

2.3 DataSourceSpout

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
* 产生词频样本的数据源
*/
public class DataSourceSpout extends BaseRichSpout {

private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");

private SpoutOutputCollector spoutOutputCollector;

@Override
public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
this.spoutOutputCollector = spoutOutputCollector;
}

@Override
public void nextTuple() {
// 模拟产生数据
String lineData = productData();
spoutOutputCollector.emit(new Values(lineData));
Utils.sleep(1000);
}

@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("line"));
}


/**
* 模拟数据
*/
private String productData() {
Collections.shuffle(list);
Random random = new Random();
int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
return StringUtils.join(list.toArray(), "\t", 0, endIndex);
}

}

产生的模拟数据格式如下:

1
2
3
4
5
6
7
8
9
Spark	HBase
Hive Flink Storm Hadoop HBase Spark
Flink
HBase Storm
HBase Hadoop Hive Flink
HBase Flink Hive Storm
Hive Flink Hadoop
HBase Hive
Hadoop Spark HBase Storm

2.4 SplitBolt

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* 将每行数据按照指定分隔符进行拆分
*/
public class SplitBolt extends BaseRichBolt {

private OutputCollector collector;

@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}

@Override
public void execute(Tuple input) {
String line = input.getStringByField("line");
String[] words = line.split("\t");
for (String word : words) {
collector.emit(new Values(word, String.valueOf(1)));
}
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}

2.5 CountBolt

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
* 进行词频统计
*/
public class CountBolt extends BaseRichBolt {

private Map<String, Integer> counts = new HashMap<>();

private OutputCollector collector;


@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector=collector;
}

@Override
public void execute(Tuple input) {
String word = input.getStringByField("word");
Integer count = counts.get(word);
if (count == null) {
count = 0;
}
count++;
counts.put(word, count);
// 输出
collector.emit(new Values(word, String.valueOf(count)));

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}

2.6 WordCountStoreMapper

实现RedisStoreMapper接口,定义tuple与Redis中数据的映射关系:即需要指定tuple中的哪个字段为key,哪个字段为value,并且存储到Redis的何种数据结构中。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
* 定义tuple与Redis中数据的映射关系
*/
public class WordCountStoreMapper implements RedisStoreMapper {
private RedisDataTypeDescription description;
private final String hashKey = "wordCount";

public WordCountStoreMapper() {
description = new RedisDataTypeDescription(
RedisDataTypeDescription.RedisDataType.HASH, hashKey);
}

@Override
public RedisDataTypeDescription getDataTypeDescription() {
return description;
}

@Override
public String getKeyFromTuple(ITuple tuple) {
return tuple.getStringByField("word");
}

@Override
public String getValueFromTuple(ITuple tuple) {
return tuple.getStringByField("count");
}
}

2.7 WordCountToRedisApp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
* 进行词频统计 并将统计结果存储到Redis中
*/
public class WordCountToRedisApp {

private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
private static final String SPLIT_BOLT = "splitBolt";
private static final String COUNT_BOLT = "countBolt";
private static final String STORE_BOLT = "storeBolt";

//在实际开发中这些参数可以将通过外部传入 使得程序更加灵活
private static final String REDIS_HOST = "192.168.200.226";
private static final int REDIS_PORT = 6379;

public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout());
// split
builder.setBolt(SPLIT_BOLT, new SplitBolt()).shuffleGrouping(DATA_SOURCE_SPOUT);
// count
builder.setBolt(COUNT_BOLT, new CountBolt()).shuffleGrouping(SPLIT_BOLT);
// save to redis
JedisPoolConfig poolConfig = new JedisPoolConfig.Builder()
.setHost(REDIS_HOST).setPort(REDIS_PORT).build();
RedisStoreMapper storeMapper = new WordCountStoreMapper();
RedisStoreBolt storeBolt = new RedisStoreBolt(poolConfig, storeMapper);
builder.setBolt(STORE_BOLT, storeBolt).shuffleGrouping(COUNT_BOLT);

// 如果外部传参cluster则代表线上环境启动否则代表本地启动
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterWordCountToRedisApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalWordCountToRedisApp",
new Config(), builder.createTopology());
}
}
}

2.8 启动测试

可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用maven-shade-plugin进行打包,打包命令如下:

1
# mvn clean package -D maven.test.skip=true

启动后,查看Redis中的数据:

三、storm-redis 实现原理

3.1 AbstractRedisBolt

RedisLookupBoltRedisStoreBoltRedisFilterBolt均继承自AbstractRedisBolt抽象类,和我们自定义实现Bolt一样,AbstractRedisBolt间接继承自BaseRichBolt

AbstractRedisBolt中比较重要的是prepare方法,在该方法中通过外部传入的jedis连接池配置( jedisPoolConfig/jedisClusterConfig) 创建用于管理Jedis实例的容器JedisCommandsInstanceContainer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public abstract class AbstractRedisBolt extends BaseTickTupleAwareRichBolt {
protected OutputCollector collector;

private transient JedisCommandsInstanceContainer container;

private JedisPoolConfig jedisPoolConfig;
private JedisClusterConfig jedisClusterConfig;

......

@Override
public void prepare(Map map, TopologyContext topologyContext, OutputCollector collector) {
// FIXME: stores map (stormConf), topologyContext and expose these to derived classes
this.collector = collector;

if (jedisPoolConfig != null) {
this.container = JedisCommandsContainerBuilder.build(jedisPoolConfig);
} else if (jedisClusterConfig != null) {
this.container = JedisCommandsContainerBuilder.build(jedisClusterConfig);
} else {
throw new IllegalArgumentException("Jedis configuration not found");
}
}

.......
}

JedisCommandsInstanceContainerbuild()方法如下,实际上就是创建JedisPool或JedisCluster并传入容器中。

1
2
3
4
5
6
7
8
9
public static JedisCommandsInstanceContainer build(JedisPoolConfig config) {
JedisPool jedisPool = new JedisPool(DEFAULT_POOL_CONFIG, config.getHost(), config.getPort(), config.getTimeout(), config.getPassword(), config.getDatabase());
return new JedisContainer(jedisPool);
}

public static JedisCommandsInstanceContainer build(JedisClusterConfig config) {
JedisCluster jedisCluster = new JedisCluster(config.getNodes(), config.getTimeout(), config.getTimeout(), config.getMaxRedirections(), config.getPassword(), DEFAULT_POOL_CONFIG);
return new JedisClusterContainer(jedisCluster);
}

3.2 RedisStoreBolt和RedisLookupBolt

RedisStoreBolt中比较重要的是process方法,该方法主要从storeMapper中获取传入key/value的值,并按照其存储类型dataType调用jedisCommand的对应方法进行存储。

RedisLookupBolt 的实现基本类似,从lookupMapper中获取传入的key值,并进行查询操作。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
public class RedisStoreBolt extends AbstractRedisBolt {
private final RedisStoreMapper storeMapper;
private final RedisDataTypeDescription.RedisDataType dataType;
private final String additionalKey;

public RedisStoreBolt(JedisPoolConfig config, RedisStoreMapper storeMapper) {
super(config);
this.storeMapper = storeMapper;

RedisDataTypeDescription dataTypeDescription = storeMapper.getDataTypeDescription();
this.dataType = dataTypeDescription.getDataType();
this.additionalKey = dataTypeDescription.getAdditionalKey();
}

public RedisStoreBolt(JedisClusterConfig config, RedisStoreMapper storeMapper) {
super(config);
this.storeMapper = storeMapper;

RedisDataTypeDescription dataTypeDescription = storeMapper.getDataTypeDescription();
this.dataType = dataTypeDescription.getDataType();
this.additionalKey = dataTypeDescription.getAdditionalKey();
}


@Override
public void process(Tuple input) {
String key = storeMapper.getKeyFromTuple(input);
String value = storeMapper.getValueFromTuple(input);

JedisCommands jedisCommand = null;
try {
jedisCommand = getInstance();

switch (dataType) {
case STRING:
jedisCommand.set(key, value);
break;

case LIST:
jedisCommand.rpush(key, value);
break;

case HASH:
jedisCommand.hset(additionalKey, key, value);
break;

case SET:
jedisCommand.sadd(key, value);
break;

case SORTED_SET:
jedisCommand.zadd(additionalKey, Double.valueOf(value), key);
break;

case HYPER_LOG_LOG:
jedisCommand.pfadd(key, value);
break;

case GEO:
String[] array = value.split(":");
if (array.length != 2) {
throw new IllegalArgumentException("value structure should be longitude:latitude");
}

double longitude = Double.valueOf(array[0]);
double latitude = Double.valueOf(array[1]);
jedisCommand.geoadd(additionalKey, longitude, latitude, key);
break;

default:
throw new IllegalArgumentException("Cannot process such data type: " + dataType);
}

collector.ack(input);
} catch (Exception e) {
this.collector.reportError(e);
this.collector.fail(input);
} finally {
returnInstance(jedisCommand);
}
}

.........
}

3.3 JedisCommands

JedisCommands接口中定义了所有的 Redis 客户端命令,它有以下三个实现类,分别是Jedis、JedisCluster、ShardedJedis。Strom中主要使用前两种实现类,具体调用哪一个实现类来执行命令,由传入的是jedisPoolConfig还是jedisClusterConfig来决定。

3.4 RedisMapper 和 TupleMapper

RedisMapper 和 TupleMapper 定义了 tuple 和 Redis 中的数据如何进行映射转换。

1. TupleMapper

TupleMapper 主要定义了两个方法:

  • getKeyFromTuple(ITuple tuple): 从tuple中获取那个字段作为Key;

  • getValueFromTuple(ITuple tuple):从tuple中获取那个字段作为Value;

2. RedisMapper

定义了获取数据类型的方法getDataTypeDescription(),RedisDataTypeDescription中RedisDataType枚举类定义了所有可用的Redis数据类型:

1
2
3
4
5
public class RedisDataTypeDescription implements Serializable { 

public enum RedisDataType { STRING, HASH, LIST, SET, SORTED_SET, HYPER_LOG_LOG, GEO }
......
}

3. RedisStoreMapper

RedisStoreMapper继承TupleMapper和RedisMapper接口,用于数据存储时,没有定义额外方法。

4. RedisLookupMapper

RedisLookupMapper继承TupleMapper和RedisMapper接口:

  • 定义了declareOutputFields方法,声明输出的字段。
  • 定义了toTuple方法,将查询结果组装为Storm的Values的集合,并用于发送。

下面的例子表示从输入Tuple的获取word字段作为key,使用RedisLookupBolt进行查询后,将key和查询结果value组装为values并发送到下一个处理单元。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class WordCountRedisLookupMapper implements RedisLookupMapper {
private RedisDataTypeDescription description;
private final String hashKey = "wordCount";

public WordCountRedisLookupMapper() {
description = new RedisDataTypeDescription(
RedisDataTypeDescription.RedisDataType.HASH, hashKey);
}

@Override
public List<Values> toTuple(ITuple input, Object value) {
String member = getKeyFromTuple(input);
List<Values> values = Lists.newArrayList();
values.add(new Values(member, value));
return values;
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("wordName", "count"));
}

@Override
public RedisDataTypeDescription getDataTypeDescription() {
return description;
}

@Override
public String getKeyFromTuple(ITuple tuple) {
return tuple.getStringByField("word");
}

@Override
public String getValueFromTuple(ITuple tuple) {
return null;
}
}

5. RedisFilterMapper

RedisFilterMapper继承TupleMapper和RedisMapper接口,用于查询数据时,定义了declareOutputFields方法,声明输出的字段。如下面的实现:

1
2
3
4
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("wordName", "count"));
}

四、自定义RedisBolt实现词频统计

4.1 实现原理

自定义RedisBolt:主要利用Redis中哈希结构的hincrby key field命令进行词频统计。在Redis中hincrby的执行效果如下。hincrby可以将字段按照指定的值进行递增,如果该字段不存在的话,还会新建该字段,并赋值为0。通过这个命令可以非常轻松的实现词频统计功能。

1
2
3
4
5
6
7
8
9
redis>  HSET myhash field 5
(integer) 1
redis> HINCRBY myhash field 1
(integer) 6
redis> HINCRBY myhash field -1
(integer) 5
redis> HINCRBY myhash field -10
(integer) -5
redis>

4.2 项目结构

4.3 自定义RedisBolt的代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/**
* 自定义RedisBolt 利用Redis的哈希数据结构的hincrby key field命令进行词频统计
*/
public class RedisCountStoreBolt extends AbstractRedisBolt {

private final RedisStoreMapper storeMapper;
private final RedisDataTypeDescription.RedisDataType dataType;
private final String additionalKey;

public RedisCountStoreBolt(JedisPoolConfig config, RedisStoreMapper storeMapper) {
super(config);
this.storeMapper = storeMapper;
RedisDataTypeDescription dataTypeDescription = storeMapper.getDataTypeDescription();
this.dataType = dataTypeDescription.getDataType();
this.additionalKey = dataTypeDescription.getAdditionalKey();
}

@Override
protected void process(Tuple tuple) {
String key = storeMapper.getKeyFromTuple(tuple);
String value = storeMapper.getValueFromTuple(tuple);

JedisCommands jedisCommand = null;
try {
jedisCommand = getInstance();
if (dataType == RedisDataTypeDescription.RedisDataType.HASH) {
jedisCommand.hincrBy(additionalKey, key, Long.valueOf(value));
} else {
throw new IllegalArgumentException("Cannot process such data type for Count: " + dataType);
}

collector.ack(tuple);
} catch (Exception e) {
this.collector.reportError(e);
this.collector.fail(tuple);
} finally {
returnInstance(jedisCommand);
}
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

}
}

4.4 CustomRedisCountApp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* 利用自定义的RedisBolt实现词频统计
*/
public class CustomRedisCountApp {

private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
private static final String SPLIT_BOLT = "splitBolt";
private static final String STORE_BOLT = "storeBolt";

private static final String REDIS_HOST = "192.168.200.226";
private static final int REDIS_PORT = 6379;

public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout());
// split
builder.setBolt(SPLIT_BOLT, new SplitBolt()).shuffleGrouping(DATA_SOURCE_SPOUT);
// save to redis and count
JedisPoolConfig poolConfig = new JedisPoolConfig.Builder()
.setHost(REDIS_HOST).setPort(REDIS_PORT).build();
RedisStoreMapper storeMapper = new WordCountStoreMapper();
RedisCountStoreBolt countStoreBolt = new RedisCountStoreBolt(poolConfig, storeMapper);
builder.setBolt(STORE_BOLT, countStoreBolt).shuffleGrouping(SPLIT_BOLT);

// 如果外部传参cluster则代表线上环境启动,否则代表本地启动
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterCustomRedisCountApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalCustomRedisCountApp",
new Config(), builder.createTopology());
}
}
}

参考资料

  1. Storm Redis Integration